Learning Low-Rank Representations with Classwise Block-Diagonal Structure for Robust Face Recognition

نویسندگان

  • Yong Li
  • Jing Liu
  • Zechao Li
  • Yangmuzi Zhang
  • Hanqing Lu
  • Songde Ma
چکیده

Face recognition has been widely studied due to its importance in various applications. However, the case that both training images and testing images are corrupted is not well addressed. Motivated by the success of low-rank matrix recovery, we propose a novel semisupervised low-rank matrix recovery algorithm for robust face recognition. The proposed method can learn robust discriminative representations for both training images and testing images simultaneously by exploiting the classwise block-diagonal structure. Specifically, low-rank matrix approximation can handle the possible contamination of data. Moreover, the classwise blockdiagonal structure is exploited to promote discrimination of representations for robust recognition. The above issues are formulated into a unified objective function and we design an efficient optimization procedure based on augmented Lagrange multiplier method to solve it. Extensive experiments on three public databases are performed to validate the effectiveness of our approach. The strong identification capability of representations with block-diagonal structure is verified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Block-Diagonal Representation Learning for Image Recognition

Existing block-diagonal representation studies mainly focuses on casting block-diagonal regularization on training data, while only little attention is dedicated to concurrently learning both block-diagonal representations of training and test data. In this paper, we propose a discriminative block-diagonal low-rank representation (BDLRR) method for recognition. In particular, the elaborate BDLR...

متن کامل

Robust face recognition via low-rank sparse representation-based classification

Face recognition has attracted great interest due to its importance in many real-world applications. In this paper, we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can reveal the subspace st...

متن کامل

Block-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data

Recently, low-rank and sparse model-based dimensionality reduction (DR) methods have aroused lots of interest. In this paper, we propose an effective supervised DR technique named block-diagonal constrained low-rank and sparse-based embedding (BLSE). BLSE has two steps, i.e., block-diagonal constrained low-rank and sparse representation (BLSR) and block-diagonal constrained low-rank and sparse ...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Block Low-Rank (BLR) approximations to improve multifrontal sparse solvers

Matrices coming from elliptic Partial Differential Equations (PDEs) have been shown to have a lowrank property: well defined off-diagonal blocks of their Schur complements can be approximated by low-rank products. In the multifrontal context, this can be exploited within the fronts in order to obtain a substantial reduction of the memory requirement and an efficient way to perform many of the b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014